电商数据挖掘之关联算法(二):牛奶可以搭配哪些商品
在数据挖掘过程中,由于数据存在分散性和偶然性,因而在底层的数据关联上很难准确挖掘出强关联规则,进而也很难为我们决策提供参考。通常的解决的方案通常是引入概念层次,在较高的层次上,我们就可以通过“支持度和置信度”的框架来挖掘多层关联规则。 文/通策信息首席运营官 谭磊 在上期的《电商数据挖掘之关联算法(一):“啤酒+尿布”的关联规则是怎么来的》,我们介绍了关联规则的基本概念,这一期则以数据实例来看最著名的Apriori关联算法的演算过程。 从一家公司的销售记录中我们找到以下8条消费记录,并以3作为最小支持度,也就是说出现频率在3次以下的记录是被我们所忽略的。
所有满足最小支持度3的1项频集如下,其中的支持度是指该产品在整个数据集中出现的次数。比如牛奶出现了5次,而冰淇淋出现了3次。 递归执行,所有满足最小支持度3的2项频集如下,这其中出现最多的频集是{牛奶,面包}和{面包,果酱},各自出现了4次。 再次递归执行,所有满足最小支持度3的3项频集只剩下一条: 那么{牛奶,果酱,面包}就是我们要的满足最小支持度3的3项频集,也就是说牛奶、果酱和面包这三个商品是最经常被一起购买的。 注:相关网站建设技巧阅读请移步到建站教程频道。 (编辑:佛山站长网) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |