分析解读数据的真正目的是什么?
|
这时她告诉我,“谢谢你,那帮我加个把手吧,高端品牌就是讲究啊,我也给BB试试看。”(表情轻松愉悦) “试过如果好的话,可以回头光顾哦!” 她稍微用力眨了一下眼睛,扬起了嘴角“呵呵,好,我们先试试~~~”。说到这里,你懂的! 4、与其单独看每个数字,不如串起来读下去,完整地读出一个“人”。 从开放式问卷的广度,到与用户对话的深度,我们一直在拼凑和补充材料,“代入”除了帮我们读懂“人”以外,也帮我们描绘了可能存在的问题,可以通俗地理解为“准备上桌的菜”。这个菜到底能上不能上,材料是不是最终做出这个菜,还得继续“小心求证”。 来到定量问卷阶段,将你的材料组织好,送到用户面前,让他们决定,他们想要什么。用户反馈回来之后,我们进入数据清洗、分析、解读阶段。 这里说一下“解读” 送到我们面前的是一堆数字,一堆图表,我们任务不是告诉大家这个数字是多少,而是数字代表什么。 第一件要做的事是,将自己每种假设的相关数字聚集起来,考察它们是否可以串成链条(俗称“证据链”),如果可以,很好,假设成立。如果不可以,研究一下,假设的漏洞在哪里,也许会发现一个新的结论。 第二件事是,将用户视角下的诸如行为路径、态度轨迹、需求满足过程等链条相关的数字串联起来,看看是否能完整描绘出“人”的形象。如果可以,很好,又一个结论浮现了,如果不可以,检查一下矛盾或缺漏点在哪里,也许会发现用户分类方法不对,另外一个细分维度可能更有效。 举个简单的例子,你有用户对皮肤的元素、颜色、风格、主题的偏好,串联起来,加上一个合适的细分维度对比分析,会发现年龄不同的用户,社会沉浸经历不同,总体风格偏好也存在差异。再类推延伸一下,会发现社会沉浸经历可能会投射在更多其他领域的偏好上。 有人可能会问,这里好像没看见“代入”。其实,在你做的两件事里面,就已经有“代入”。组织证据链、剖绘形象人这两件工作,这需要你很好地读懂选项占比以及填选项的人,才能做好。 本文为马海祥博客原创文章,如有转载,请注明原文摘自于http://www.mahaixiang.cn/sjfx/263.html,注明出处;否则,禁止转载,谢谢配合! 注:相关网站建设技巧阅读请移步到建站教程频道。 (编辑:佛山站长网) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |


