加入收藏 | 设为首页 | 会员中心 | 我要投稿 佛山站长网 (https://www.0757zz.com/)- 科技、建站、经验、云计算、5G、大数据,站长网!
当前位置: 首页 > 运营中心 > 电子商务 > 分析 > 正文

数据分析这点事:如何看懂数据 用好数据?

发布时间:2013-04-17 08:31:55 所属栏目:分析 来源:站长网
导读:我常订阅一些著名分析师的微博,他们透露的数据往往是很有价值的(这是我订阅的原因),但是他们的解读通常是惨不忍睹的,这就是只看表象的恶果,而且随便翻看一下他们的数

1、因果关联错误,或忽略关键因素,A和B的数据高度相关,有人就片面认为A影响了B,或者B影响了A;但是,有时候真实原因是C同时影响了A和B,有时候C被忽略掉了。

2、忽略沉默的大多数,特别是网上投票,调查,极易产生这种偏差,参与者往往有一定的共同诉求,而未参与者往往才是主流用户。

3、数据定义错误,或理解歧义,在技术与市场、产品人员沟通中产生信息歧义,直接导致所处理的数据和所需求的数据有偏差,结果显著不正确。

4、强行匹配;不同公司,不同领域的数据定义可能不一致,在同一个公司内或领域内做对比,往往没有问题,大家对此都很习惯,却有评论家不懂装懂,强行将不同定义的数据放在一起对比做结论,显著失真;海外著名金融机构在分析中国页游和端游市场就连续犯这类错误。

5、忽略前提;有些数据结论是基于某种前提,符合某种特定场景下得出的,但是解读者有意或无意忽略前提,将结论扩大化,显著误读。

6、忽略交互;在商业模式改造和产品改进,往往都会出这类问题,最简单说,你游戏中的道具降价,对收入的影响是增还是减?如果忽略交互,仅仅依赖于数据推算,当然是减,但是实际呢?做运营的都知道。

7、缺乏常识;如果对一些重要的纪念日,节日,或者网购节不了解,那去处理有关数据显然就不知所云了。做行业报告更是如此,很难想像对行业不了解的人能做出怎样的报告。

8、无视样本偏差;我们通常做数据调研,是基于样本数据,而采样过程本身很难做到完全的公平和分散,样本偏差要控制在合理范畴内,即便无法控制,在结论中也需要标注;这才是严谨的数据解读,对样本偏差视而不见,甚至为了某种宣传目的刻意寻找偏差的样本,都不可能做出好的数据结论。

那么, 数据处理也多说一点,虽说是个技术活,但是有些不那么技术的事情,也必须做到位才行;很多时候,我看到一个数据,不符合我的预期,我第一反应,是了解数据来源和处理逻辑,我们通常面对的数据,包括大量的干扰,噪音数据,以及一些识别上容易产生歧义甚至误判的数据,这都是需要处理的,很多时候工程师只关心算法层面、效率层面,不愿意也不关心这些东西,所得出的数据结论失真度就非常高,越是大公司,这种情况越普遍;在我效力的巨头公司时,这样的范例非常多,处理方法其实很简单,多看看源数据,对中间的噪音和干扰数据正确识别标注,对容易误判的数据进行二次判定,全是苦力活,没啥技术含量,但是这是必须的。

最后,很多人想知道我怎么看数据,或者想问我,他们每天看很多数据,不知道怎么去看,我其实有很简单的三板斧,一学就会,一用就灵,对常见的数据场景,可解决绝大部分日常需求。 简单说就是“对比,细分,溯源” 六字真言,没了。

对比,数据放在那里,是没意义的,你说你游戏周流失率80%,啥情况?不知道,你问我我也不知道。对比起来才知道。

一是横比,你拿出50款游戏来比,别人平均流失率90%,你80%,你游戏还不错勒,别人要平均流失65%,你80%,这就有问题了。

二是纵比,和自己时间轴比,你两个月前1.0版本流失率90%,你现在80%,有进步么,你要是两个月前是50%,现在80%,好好反思喽。

所以,我特别强调,在通常企业数据监控,显示一大屏数据的界面上,对比特征要最大体现,比如所有同比下降超过多少比例的一概红色体现,所有上升多少比例的一概绿色体现,公司运营状况一目了然。

细分,数据出现对比异常,你当然想知道原因,那就需要细分了。

细分先分纬度,再分粒度,什么是纬度?你按照时间去分,就是时间纬度,按照地区去分,就是地区纬度,按照来路去分,就是来路纬度,按照受访去分,就是受访纬度;你说今天网站访问量涨了5%,咋回事不知道,你细分一看,大部分网页都没涨,某个频道某个活动页涨了300%,这就清楚了,这就是细分最简单的范例,其实很多领域都通用。 粒度是什么,你时间纬度,是按照天,还是按照小时?这就是粒度差异,你来路纬度,是来路的网站,还是来路的url,这就是粒度的差异;这样可以将对比的差异值逐级锁定,寻找原因。

溯源,有时候我对比,细分锁定到具体纬度,具体粒度了,依然没有结论,怎么办,溯源,依据锁定的这个纬度和粒度作为搜索条件,查询所涉及的源日志,源记录,然后基于此分析和反思用户的行为,往往会有惊人的发现,我们正是基于这一逻辑发现过产品的一些缺陷,而且你不断通过这个方式分析数据,对用户行为的理解也会逐步加深。

其实,这个话题还有很多延伸,比如,如何看一个年轻人有没有数据分析潜质;以及如何培养数据分析和产品分析人才,等等,不过,就这样吧。今天说的不少了,我水平有限,吃饭的就这几招,而且又老又笨,大家都会了我离下岗也不远了,您就凑活看吧。

(编辑:佛山站长网)

【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容!

推荐文章
    热点阅读